
JavaScript Performance Rocks!
by Amy Hoy & Thomas Fuchs

http://jsrocks.com/

a smattering of representative pages
(note: not in sequence!)

Sample Pages

http://www.jsrocks.com

Is Your App Behaving Badly?

22

loadtime

runtime

DOM
complexity

DOM Complexity
Is a pimple on a pimple on

a pimple. It crosses the

loadtime/runtime issue

boundaries.

page weight

of files

caching

script tags

serving, bandwidth

Loadtime

code complexity

slow access methods

libraries, parsing, etc.

memory issues

runaway code

unoptimized code

Runtime

STRATA IN THE PROBLEMOSPHERE
The majority of rich web app issues are loadtime or runtime, and they

break down something like this:

PROBLEMS IN LOADTIME

• page weight

• Number of files

• Caching

• DOM complexity

• <script /> practices

• serving set-up / bandwidth

PROBLEMS IN RUNTIME

• DOM complexity

• code complexity

• slow access methods / libraries / wrapping functions / data parsing

• excessive memory use / leaks

• runaway event handlers

• unoptimized code

These two groups make up two of three sections of this book—and in

that order, too. For most folks, the vast majority of problems and fixes

will fall under loadtime. Loadtime issues are easy to cause, easy to find,

and easy to fix.

For the truly serious about performance, runtime will provide an
Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Your Friend, the DOM Monster!
OPEN YOUR MOUTH & SAY AAAAAGGHH!! MONSTER!
The inspiration for the DOM Monster! came from a sketch
Amy made in the midst of a particularly hellish project.

CHAPTER 4

The DOM Monster lives in a cave (your browser’s bookmarks bar)

and comes with called with a magical rite (a click). It

is a mystical creature, not unlike a yeti, but rather than

subsisting on rancid yak butter, it gets its jollies by

traversing DOM trees.

It’s a wonderful adaptation. No other creature in the

universe would ever dream of stealing away this special

niche.

Oh, and when it’s done exploring, it gives you advice.

Yeah. It’s pretty awesome.

INSTALLING THE DOM MONSTER

Go into this book’s package and check out the Goodies

folder. Double-click DOMMonster.html. Follow the

instructions. (It works in all recent browsers!)

That’s it.

Profiling with WebKit & Safari 4

49

NAMING PROFILE OBJECTS & METHODS
Both Safari 4 and WebKit Nightlies also have one extremely special
feature: the displayName attribute.

Profiles in WebKit tend to be a bit confusing because so many functions
used in JavaScript code tend to be anonymous or otherwise have no true
name. You’ll get lots of (anonymous function) or (?)() in your list.

But the guys of the Cappuccino team* have made a number of patches
to the Inspector, including this one:

console.profile('super hero profiling');

 var rideIntoSunset = function() {

 for(i = 0; i < 1000; i++) {

 a = i * 1000;

 }

 }

 rideIntoSunset.displayName = "Ride into the sunset";

 rideIntoSunset();

console.profileEnd('super hero profiling');

With the displayName property on methods, you can control what you
see when you run profiles.
It works both on regular functions that are just hangin’ out (like above)

*Cappucino is a development

framework for desktop-like

web apps, read all about it on

http://objective-j.org.

Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Firebug with YSlow
CHECK YOUR CACHING, WEIGH YOUR ASSETS, & GRADE YOUR CODE

YSlow: the very best extension of an extension in the world!

CHAPTER 5

When you're ready to take the next step, take it with YSlow.

YSlow is a Firebug plugin—and Firebug is a Firefox extension. As far as

we know, there aren't any extensions for YSlow which extent Firebug

which extends Firefox, but you never know.

YSlow comes from the Yahoo! performance team and is geared at one

thing and one thing only: helping you check up on the performance of

your web apps/pages. You get a variety of helpful tools in one package

Loadtime: The Cachét of Caching

9

CACHING STRATEGIES
There are two major strategies for caching JavaScript and CSS assets:

very long cache periods (e.g. months or years; “far future cache”)•

short or medium cache periods (days) (“short cache”)•

They’ve both got their pros and cons, and, unfortunately, both require a

different support system to work right.

For sake of argument, let’s pretend we’ve got this interesting little file

that we want to cache and it’s called our_app.js.

Here’s how it’d work with both strategies.

FAR FUTURE CACHE PERIODS
With a far-future caching setup, you set the expiration date far in the

future (big surprise)—months or years. That’s a long time.

This seems ideal, because then your user’s caches will be safe and their

experience will be snappy until many happy months go by.

But meanwhile, back at the data center, you want to roll out your spiffy

new psychic autocompleter—but nobody will know because you originally

set a far-future cache expiration date to 2010.Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Loadtime: The Cachét of Caching

9

CACHING STRATEGIES
There are two major strategies for caching JavaScript and CSS assets:

very long cache periods (e.g. months or years; “far future cache”)•

short or medium cache periods (days) (“short cache”)•

They’ve both got their pros and cons, and, unfortunately, both require a

different support system to work right.

For sake of argument, let’s pretend we’ve got this interesting little file

that we want to cache and it’s called our_app.js.

Here’s how it’d work with both strategies.

FAR FUTURE CACHE PERIODS
With a far-future caching setup, you set the expiration date far in the

future (big surprise)—months or years. That’s a long time.

This seems ideal, because then your user’s caches will be safe and their

experience will be snappy until many happy months go by.

But meanwhile, back at the data center, you want to roll out your spiffy

new psychic autocompleter—but nobody will know because you originally

set a far-future cache expiration date to 2010.

Stop! Don't Close That Tag!

73

part of their extreme tuning package.

THE CLOSING TAG—ER, WORD
Realistically speaking, there's nothing wrong with leaving off </body></

html> or or even </p>. And of course, you should self-close tags

where possible.

Google, in fact, doesn't close </body> or </html> on their homepage and

search results.

However, there are downsides you need to keep in mind:

you have to use the HTML4 DTD•

you still may experience rendering issues (dropping • </body> and </

html> seems to cause no issues, but other tags might)

omitting tags may increase parsing and thus rendering complexity, •

which means it may increase render time and runtime behaviors, even

while it decreases download time

For a mini tech video on this topic, check out Google's page "Reducing

the file size of HTML Documents":

http://code.google.com/speed/articles/optimizing-html.html

Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Common wisdom in web development circles says: separate content

(HTML) from presentation (CSS), and to keep both of those faaaaar

away from dirty old function (e.g. JavaScript code).

And just like every other kind of common wisdom, there are exceptions.

Brace yourself, because we’re about to tell you that sometimes it makes

sense to smush your CSS and JavaScript into the very same file with your

HTML.

INLINING ISN’T EVIL
Sometimes smushing your CSS and JavaScript into one file with your

HTML—called inlining—is not merely okay, but actually really beneficial.

It’s natural for this to feel wrong. Just know that it’s right.

Proof: Google inlines. And their whole motto is “Don’t Be Evil.” So it

Inlining & Precaching
LIKE INLINE SKATING, BUT WITHOUT THE SCABBING

Mama always told you to separate your concerns. Or was it
that there’d be days like this?

Anyway.

CHAPTER 5

We don’t mean squishing your CSS

into attributes inside your HTML tags

(or JavaScript, either).

We mean inlining the whole contents

of files. In the appropriate places.

Run Run Run Away... Timers

10

KNOW THY ENEMY
Here's how, why and when browsers will display script timeout /

unresponsive page warnings:

WORKAROUNDS
To fight these warnings, you have two main options:

* Reduce the problem (offload calculations to the backend; tune your

approach; tune your JavaScript, etc.), or

* Manage the problem, by chunking the operations into sub-10-second

batches, and invoking each one sequentially with setTimeout().

Browser Behavior

Internet Explorer 8 Alert after 1 second, prompting for user to choose to continue

or cancel. Again after a further 1 second, ad infinitum.

Internet Explorer 7 No warning, browser just hangs until operations are done.

Safari Alert after 10 seconds, prompting for user to choose to

continue or cancel. Again after a further 10 seconds, ad

infinitum.

Firefox Alert after 10 seconds, prompting for user to choose to

continue or cancel. Again after a further 10 seconds, ad

infinitum.

Chrome Alert after 20 seconds, but script continues to run. Dialog will

self-close if the script finishes.

Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

DOM, DOM DOM DOMMM

25

SETTING ELEMENT’S STYLES
Good news! If you dynamically set the styles of your elements with
multiple accessors, then that means you’ve got some more speed you can
eke out right now, without hurting too bad.

It’s significantly faster to dump it all at once into the cssText accessor
(just like with innerHTML). The DOM API accessors are prettier, but
slower.

This is especially true if you have a huge and/or complex DOM.

Here’s a couple benchmarks you can use to test it yourself:

benchmark(function(){

 element.style.cssText = 'font-size:'+Math.

random()*50+'px;text-indent:'+Math.random()*50+'px';

}, 10000, 'cssText');

benchmark(function(){

 element.style.fontSize = Math.random()*50+'px';

 element.style.textIndent = Math.random()*50+'px';

}, 10000, 'direct styles');

Even with this extremely simple example—just one DIV!—the cssText
approach is 25% faster in Safari 3 and 50% faster in Firefox 3.

EXCEPT WHEN IT'S SLOWER...
The cssText approach is only faster when you set all the desired

Pretty == Slow?
You may have noticed a continuing

theme here: “the pretty” is often also

“the slow.” But it doesn’t have to

be. With a little knowledge, careful

attention, and dogged determination,

beautiful visual effects can be fast. The

good things in life, and on the web, are

often not the same as the easy things.

Method Calls Cost Money
OH, I CAN LIVE... WITH(), WITHOUT YOU...
MCCM! It’s our new chant and just the right length for a
knuckle tattoo.

CHAPTER 12

Method calls are expensive, so if you’re hard up for cycles consider

the following technique. But only if it doesn’t make your code

unmaintainable. Let’s not get too hasty.

Consider inlining functionality into your loops, turning original code like

this:

// Method call method - not so fast, buster

function square(n){ return n*n };

var i=10000, sum = 0;

while(i--) { sum += square(i) };

Into this:

// Inline functionality - fasterrrrr!

var i=10000, sum = 0;

while(i--) { sum += i*i };

The latter is 2 - 4 times faster. And it's even more succinct.
Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Smooth Operators
TO == OR ===, THAT IS THE QUESTION

Whether 'tis nobler in the engine to suffer the slings and
arrows of haphazard choices, or to take arms against a sea
of deceleration!

CHAPTER 6

Actually, there are other questions addressed in this chapterlette, but

that is the first one we'll cover.

TO == OR ===, THAT IS THE QUESTION
There are two equivalence operators in JavaScript: == (equality) and ===

(strict equality).

The strict equality operator (3, count 'em, 3: ===) gives you a slight edge

on performance, in most cases. It's a good choice if you need some pep

in your expression.

But be aware, it doesn't behave exactly like the regular ol' two-pronged

equality operator, even though it usually seems to.

Watch out for these edge cases:

undefined === null

=> FALSE

The Key Pause Approach
FORTHRIGHT BEHAVIOR RETURNS STUNNING RESULTS!
Yeah, sure, we just told you to lie, but this technique is a
fabulous example of what can go right when you are totally
upfront.

CHAPTER 2

Users give up on slow-running apps because of many reasons, but a big

one is disappointment. They were expecting it now, dammit!

If you communicate with your visitors up front, they can't be

disappointed, by definition—because disappointment comes from the

chasm between expectations and reality.

THAT 5 - 8 SECONDS RULE
It's still true that users will wait only 5 - 8 seconds for a page load before

abandoning it for dead.

It's also true that you can triple the amount of time they will wait, with a

few tweaks to your app's interface.

WAIT, WAIT—TRIPLE?
Yes, that's right, you can triple the amount of time people will wait. Your

users will give you vastly more leeway if you just let them know what to

expect, and keep them in the loop.
Learn more about JavaScript Performance Rocks!

http://www.jsrocks.com

Batch Client-Side Processes
WHEN YOU REALLY CAN'T DO ANYTHING ELSE
The word "batch" summons up delicious memories of warm
cookies. This isn't about cookies, nor is it delicious, or even
warm. But it might save your butt.

CHAPTER 3

We've recommended that you consider batching for long-running server-

side processes. Now we're recommending it for long-running client-side

processes, too.

To our way of thinking, you shouldn't have long-running client-side

processes. When in doubt, outsource it to the back-end.

But if you really can't avoid it, you need to break it up so your users

aren't terribly inconvenienced—or, worse yet, think your app has stopped

working, or their browser has crashed.

JAVASCRIPT IS BLOCKING
Sometimes you just can't help it and have to process lots of data on

the client—which can mean visible temporay 'lock-ups' of your web app:

short periods of time where the browser doesn't respond.

This is because JavaScript is blocking and the main browser event loop

(the one that handles mouse clicks, the browser menu bar, etc) won't do

anything until after the JavaScript has been executed.

JavaScript Performance Rocks!
by Amy Hoy & Thomas Fuchs

http://jsrocks.com/

for checking out our sample pages
if you’d like to learn more (or even buy!), just

click here

Thanks!

http://www.jsrocks.com

